Google Go!

Seminar aus Informatik

Martin Aigner 0621270
Alexander Baumgartner 0620345

Department of Computer Science
University of Salzburg

May 28, 2010

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 1/22

.
Data Allocation and Runtime Representation

@ Basic Types

© Arrays and Strings

© Slices
O Maps

© New and Make

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 2/22

Basic Types

i := 1234
1234 int

j := int32(1)
int32

f := float32(3.14)
3.14 float32

b := [3]byte{'a','b','c'}

[aloIc] [31byte
primes := [3]int{2,3,5}
[2 T 3 T 5]I131int32

Figure: Memory Layout of basic types

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010

3/22

Struct Type

type Point struct { X, Y int }

p := Point{10, 20}
[106 | 20 |Point

pp := &Point{10, 20}

@ *point

[10 [20 |Point

Figure: Memory Layout of structs

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 4 /22

Struct Type

type Rectl struct { Min, Max Point }
type Rect2 struct { Min, Max *Point }

rl := Rectl{Point{10, 20}, Point{50, 60}}
[10 T 20 [56 [606] Rectl

r2 := Rect2{&Point{10, 20}, &Point{50, 60}}
| | o | Rect2

10 | 20 | [50 | 60 | Point

Figure: Memory Layout of composite structs

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010

5/ 22

Arrays and Strings

s := "hello"
| < | 5 |string

ptr len

hle|t|1]o]| [5]1byte

t = s[273]
| < | 1 |string

ptr len

Figure: Memory Layout of a string

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010

6/ 22

Slices

Slices

x := []int{2,3,5,7,11}
L _« 1 5 1 5]Ilint

ptr len cap

2] 31 5] 7|11][5]int

[T 2 T 4 Jilint

ptr len cap

Figure: Slicing an array of integers

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 7/22

Maps

Maps are...

... built-in data structures to associate values of different types. Keys can
be any type for which the equality operator is defined.

@ integers
o floats
@ strings

@ pointer

e interfaces (if the dynamic type supports equality)

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 8 /22

Maps

Example

//composite literal construction
var timeZone = map[string] int {
"UTC": 0x60x60,
"EST": —5%60+60,
// and so on
}
//accessing map values
offset := timeZone["EST"]

//checking 0 v.s. non—existanve

var seconds int

var ok bool

seconds , ok = timeZone[tz] //comma ok idiom

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 9 /22

New and Make

New
@ new(T) returns a *T, a pointer to zeroed storage
@ ready to use

@ works transitively

Make
@ make(T, args) returns a value of type T, not a pointer

@ used for slices, maps and channels only

@ initialized complex datastructure

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 10 / 22

Examples for New

new(Point)

[« [*Point

[6 [©]Point

new(Rectl)

|jvl *Rectl

e T o [o T o

new(Rect2)

Figure: Allocation with new

Aigner, Baumgartner (Uni Salzburg) Google Go!

May 28, 2010

11/ 22

Examples for Make

new([]lint)
*[1int

[Cnit T o T @ Jrlint

ptr len cap

make([]int, 0O)
[T o T @ Jiiint

ptr len cap
[0]int

make([]int, 2, 5)
[« T 2 T 5]rlint

ptr len cap

[oT o] o] o] oe]s1int

Figure: Allocation with make

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 12 / 22

-
Concurrency

@ Share by communicating
@ Goroutines
© Channels

© Parallelization

@ Example

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 13 / 22

Share by communicating

Share by communicating

Slogan

Do not communicate by sharing memory; instead, share memory by
communicating

@ Shared values are passed around on channels
@ Only one goroutine has access to the value at any given time

@ Using channels to control access makes it easier to write clear, correct
programs

@ It can also be seen as a type-safe generalization of Unix pipes

For reference counts there is no need to put a mutex around the integer
variable

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 14 / 22

Goroutines

Goroutines

Goroutines are...
...functions executing in parallel with other goroutines in the same address
space

@ Prefix a function or method call with the go keyword to run the call
In @ new goroutine
@ Hides many of the complexities of thread creation and management
@ Goroutines are multiplexed onto multiple OS threads
@ When the call completes, the goroutine exits, silently
func main() {

go expensiveComputation(x, vy, z)
anotherExpensiveComputation(a, b, c)

}

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 15 / 22

Channels |

Channels combine...
...communication with synchronization J

@ Shared values are passed around on channels
@ Like maps, channels are a reference type and are allocated with make

@ Channels can be buffered
@ With a channel you can make one goroutine wait for an other

o Receivers always block until there is data to receive

o If the channel is unbuffered, the sender blocks until the receiver has
received the value

o If the channel has a buffer, the sender blocks if the buffer is full

ci := make(chan int) // unbuffered channel of integers
cs := make(chan *os.File, 100) // buffered channel of pointers to Files

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 16 / 22

Channels I

Channels combine...
...communication with synchronization J

¢ := make(chan int) // Allocate a channel.
// Start the sort in a goroutine; when it completes, signal on the channel.
go func() {
list.Sort()
c <-1// Send a signal; value does not matter.
10
doSomethingForAWhile()
<- ¢ // Wait for sort to finish; discard sent value.

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 17 / 22

Parallelization

If the calculation can be broken into separate pieces,...

...it can be parallelized, with a channel to signal when each piece
completes.

@ Current compilerimplementations will not parallelize code by default
@ Environment variable GOMAXPROCS sets the number of cores to use
@ Or call runtime. GOMAXPROCS(NCPU) from your code

A good example for parallelization is a request-broker.
We handle a defined number of requests in parallel and block incoming
requests if the maximum number is reached.

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 18 / 22

Semaphore using a channel | (Code)

var sem = make(chan int, MaxOutstanding)
func handle(r *Request) {
sem <- 1; // Wait for active queue to drain.
process(r); // May take a long time.
<-sem; // Done; enable next request to run.
}
func Serve(queue chan *Request) {
for {
req := <-queug;
go handle(req); // Don't wait for handle to finish.
}
}

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010

19 /22

Semaphore using a channel Il (Figure)

Thread 1
e R, S make (chan int, 3)

¥ mem; \

Thread 2

zem - 1
critical =zection
<- Zem;

Serve

for |
reqg = <-gueue
go handle(reg);
]

-

Threadd | | —77777Tooooo

zem - 1
critical =zection

= mem; /

Thread 4 Biloc kad waiting
for siot

zem - 1

critical =ection

<- Zem;

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 20 / 22

The End

Thank Youl

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 21 /22

N —
References

[1] The go programming language, 2010. URL http://golang.org.

[2] Go 14, 2010. URL
http://www.technovelty.org/code/go-14.html.

[3] The go programming language blog, 2010. URL http:
//blog.golang.org/2010/05/new-talk-and-tutorials.html.

[4] Russ Cox. researchlrsc, 2010. URL http:
//research.swtch.com/2009/11/go-data-structures.html.

[5] golang-nuts, 2010. URL
http://groups.google.com/group/golang-nuts.

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 22 /22

http://golang.org
http://www.technovelty.org/code/go-l4.html
http://blog.golang.org/2010/05/new-talk-and-tutorials.html
http://blog.golang.org/2010/05/new-talk-and-tutorials.html
http://research.swtch.com/2009/11/go-data-structures.html
http://research.swtch.com/2009/11/go-data-structures.html
http://groups.google.com/group/golang-nuts

	Data Allocation and Runtime Representation
	Basic Types
	Arrays and Strings
	Slices
	Maps
	New and Make

	Concurrency
	Share by communicating
	Goroutines
	Channels
	Parallelization
	Example

	Conclusion
	References

