
Google Go!
Seminar aus Informatik

Martin Aigner 0621270
Alexander Baumgartner 0620345

Department of Computer Science
University of Salzburg

May 28, 2010

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 1 / 22

Data Allocation and Runtime Representation

1 Basic Types

2 Arrays and Strings

3 Slices

4 Maps

5 New and Make

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 2 / 22

Basic Types

Basic Types

Figure: Memory Layout of basic types

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 3 / 22

Basic Types

Struct Type

Figure: Memory Layout of structs

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 4 / 22

Basic Types

Struct Type

Figure: Memory Layout of composite structs

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 5 / 22

Arrays and Strings

Arrays and Strings

Figure: Memory Layout of a string

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 6 / 22

Slices

Slices

Figure: Slicing an array of integers

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 7 / 22

Maps

Maps

Maps are...

... built-in data structures to associate values of different types. Keys can
be any type for which the equality operator is defined.

integers

floats

strings

pointer

interfaces (if the dynamic type supports equality)

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 8 / 22

Maps

Maps

Example

// compos i t e l i t e r a l c o n s t r u c t i o n
va r t imeZone = map [s t r i n g] i n t {

"UTC" : 0∗60∗60 ,
"EST" : −5∗60∗60 ,
// and so on

}
// a c c e s s i n g map v a l u e s
o f f s e t := timeZone ["EST"]

// check i ng 0 v . s . non−e x i s t a n v e
va r s econds i n t
va r ok boo l
seconds , ok = timeZone [t z] //comma ok id iom

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 9 / 22

New and Make

New and Make

New

new(T) returns a *T, a pointer to zeroed storage

ready to use

works transitively

Make

make(T, args) returns a value of type T, not a pointer

used for slices, maps and channels only

initialized complex datastructure

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 10 / 22

New and Make

Examples for New

Figure: Allocation with new

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 11 / 22

New and Make

Examples for Make

Figure: Allocation with make

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 12 / 22

Concurrency

6 Share by communicating

7 Goroutines

8 Channels

9 Parallelization

10 Example

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 13 / 22

Share by communicating

Share by communicating

Slogan

Do not communicate by sharing memory; instead, share memory by
communicating

Shared values are passed around on channels

Only one goroutine has access to the value at any given time

Using channels to control access makes it easier to write clear, correct
programs

It can also be seen as a type-safe generalization of Unix pipes

For reference counts there is no need to put a mutex around the integer
variable

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 14 / 22

Goroutines

Goroutines

Goroutines are...

...functions executing in parallel with other goroutines in the same address
space

Prefix a function or method call with the go keyword to run the call
in a new goroutine

Hides many of the complexities of thread creation and management

Goroutines are multiplexed onto multiple OS threads

When the call completes, the goroutine exits, silently

func main() {
go expensiveComputation(x, y, z)
anotherExpensiveComputation(a, b, c)

}

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 15 / 22

Channels

Channels I

Channels combine...

...communication with synchronization

Shared values are passed around on channels

Like maps, channels are a reference type and are allocated with make

Channels can be buffered

With a channel you can make one goroutine wait for an other

Receivers always block until there is data to receive
If the channel is unbuffered, the sender blocks until the receiver has
received the value
If the channel has a buffer, the sender blocks if the buffer is full

ci := make(chan int) // unbuffered channel of integers
cs := make(chan *os.File, 100) // buffered channel of pointers to Files

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 16 / 22

Channels

Channels II

Channels combine...

...communication with synchronization

c := make(chan int) // Allocate a channel.
// Start the sort in a goroutine; when it completes, signal on the channel.
go func() {

list.Sort()
c <- 1 // Send a signal; value does not matter.

}()
doSomethingForAWhile()
<- c // Wait for sort to finish; discard sent value.

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 17 / 22

Parallelization

Parallelization

If the calculation can be broken into separate pieces,...

...it can be parallelized, with a channel to signal when each piece
completes.

Current compilerimplementations will not parallelize code by default

Environment variable GOMAXPROCS sets the number of cores to use

Or call runtime.GOMAXPROCS(NCPU) from your code

A good example for parallelization is a request-broker.
We handle a defined number of requests in parallel and block incoming
requests if the maximum number is reached.

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 18 / 22

Example

Semaphore using a channel I (Code)

var sem = make(chan int, MaxOutstanding)
func handle(r *Request) {

sem <- 1; // Wait for active queue to drain.
process(r); // May take a long time.
<-sem; // Done; enable next request to run.

}
func Serve(queue chan *Request) {

for {
req := <-queue;
go handle(req); // Don’t wait for handle to finish.

}
}

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 19 / 22

Example

Semaphore using a channel II (Figure)

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 20 / 22

The End

Thank You!

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 21 / 22

References

[1] The go programming language, 2010. URL http://golang.org.

[2] Go l4, 2010. URL
http://www.technovelty.org/code/go-l4.html.

[3] The go programming language blog, 2010. URL http:

//blog.golang.org/2010/05/new-talk-and-tutorials.html.

[4] Russ Cox. research!rsc, 2010. URL http:

//research.swtch.com/2009/11/go-data-structures.html.

[5] golang-nuts, 2010. URL
http://groups.google.com/group/golang-nuts.

Aigner, Baumgartner (Uni Salzburg) Google Go! May 28, 2010 22 / 22

http://golang.org
http://www.technovelty.org/code/go-l4.html
http://blog.golang.org/2010/05/new-talk-and-tutorials.html
http://blog.golang.org/2010/05/new-talk-and-tutorials.html
http://research.swtch.com/2009/11/go-data-structures.html
http://research.swtch.com/2009/11/go-data-structures.html
http://groups.google.com/group/golang-nuts

	Data Allocation and Runtime Representation
	Basic Types
	Arrays and Strings
	Slices
	Maps
	New and Make

	Concurrency
	Share by communicating
	Goroutines
	Channels
	Parallelization
	Example

	Conclusion
	References

